

# **Well Testing**

**Measurement** 

### **Gas Metering**

Accurate metering of gas flowed during well test operations is critical to providing concise flow data. This data is then input into a standard gas calculation model, the results of which can be used to evaluate reservoir properties, estimate field commerciality and plan production systems.

Extensive well testing experience has enabled Expro to select and design optimal systems to achieve the highest level of data accuracy. Gas metering has generally involved use of orifice type differential pressure meters.

This meter type is still widely used and calculation procedures are those specified in AGA Report No. 3 except for the supercompressibility factor, which originates from the Dranchuk, Purvis and Robinson correlation. These procedures employ various base criteria and correction factor values to ensure that data output is to a consistent and accurate industry standard.

The recent development and availability of alternative technologies such as the Coriolis Mass Flow meter have meant their use becoming increasingly more prevalent, particularly due to their nonintrusive operating parameters.

The gas calculation for the Mass Flow (Coriolis) meter is based on mass flow measured at the meter being converted to volume using a calculated density which uses the universal constant of air as a reference and the density measured from the test separator.

The Expro data acquisition software will convert the mass flow at the meter to a volumetric value.

#### Applications

· Gas metering and measurement

#### **Features and Benefits**

- Consistent standard use of AGA 3 for calculations
- Alternative use of various meter types and configuration
- No ambiguity in data produced







# **Well Testing**

**Measurement** 

### **Gas Metering**

| Technical specificati               | Orifice meter                                         | Coriolis mass flow meter                                                     |                               |                               |                               |                               |  |
|-------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|
|                                     | Office meter                                          | Coriolis mass now meter                                                      |                               |                               |                               |                               |  |
| Model                               | Daniels senior                                        | CMF300                                                                       | CMF400                        | CMF 350P                      | CMF 400H                      | F300                          |  |
| Nominal size<br>inches              | 2 – 12                                                | 3                                                                            | 4-6                           | 4                             | 4 - 6                         | 3                             |  |
| Gas accuracy % of flowrate          |                                                       | +/-0.35                                                                      | +/-0.35                       | +/-0.25                       | +/-0.25                       | +/-0.5                        |  |
| Density accuracy<br>g/cc            |                                                       | +/-0.0005                                                                    | +/-0.0005                     | +/-0.0005                     | +/-0.0005                     | 0.002,<br>0.001,<br>0.0005    |  |
| Wetted parts                        | Carbon Steel (WCB<br>and LCC) 316/316L<br>SST, Duplex | 316L SST                                                                     | 316L SST                      | Nickel Alloy C22/<br>316L SST | Nickel Alloy C22              | 316L SST                      |  |
| Temperature range<br>°F (°C)        | -20 to 160 (-29 to 71)                                | -20 to 100 (-29 to 38)                                                       | -20 to 100 (-29 to 38)        | -40 to 140<br>(-40 to 60)     | -40 to 140<br>(-40 to 60)     | -40 to 140<br>(-40 to 60)     |  |
| Pressure rating<br>psi (bar)        | 1,500 (103)                                           | 1,450 (100)                                                                  | 1,450 (100)                   | 2,250 (155)                   | 2,855 (197)                   | 2,160 (149)                   |  |
| Typical bore size<br>inches (mm)    | 6 – 5.761 (146.33)<br>4 – 3.826 (97.18)               | 3 to 4<br>(75 to 100)                                                        | 4 to 6<br>(100 to 150)        | 4 (100)                       | 4 to 6 (100 to 150)           | 3 (75)                        |  |
| Nominal flowrate<br>Ibs/hr (kgs/hr) |                                                       | -                                                                            | -                             | -                             | -                             | -                             |  |
| Maximum flowrate<br>Ibs/hr (kgs/hr) |                                                       | 0 to 78,000<br>(0 to 36,000)                                                 | 0 to 198,000<br>(0 to 92,000) | 0 to 138,000<br>(0 to 62,000) | 0 to 198,000<br>(0 to 92,000) | 0 to 104,700<br>(0 to 47,505) |  |
| ATEX classification                 |                                                       | CE 0575 II 2G EEx ib IIB T1–T5<br>CE 0575 II 2G Ex ib IIB T1–T6 ( F- Series) |                               |                               |                               |                               |  |
| Service type                        | Sour Sour to NACE MF                                  | 8-0175                                                                       |                               |                               |                               |                               |  |
| Calculation in accordance with      | AGA 3 1. API 14.3 2.                                  |                                                                              |                               |                               |                               |                               |  |

Note: The Expro Global Standard for Flow Calculations, INS-006444, details all relevant information regarding calculation standards and methodology.

For more information contact your local Expro representative or email welltesting@exprogroup.com

American Gas Association Report No 3
API-AGA joint flow measurement code (API MPMS Chapter 14, Section 3, Part 2:2000(R2011) - also AGA Report No. 3, Part 2 and GPA 8185-00, Part 2)