

Distributed Fiber Optic Sensing

A new era in well integrity

From evaluation to remediation, we can give you a more in-depth insight into your well.

Monitoring oil and gas wells requires state of the art sensing technologies. Fiber optic has become an increasing part of surveillance in the industry, which has been driven by technological enhancements and greater knowledge of what it can do.

Our Distributed Fiber Optic Sensing (DFOS) gives us the capability to monitor your entire well. It enables you to observe dynamic behaviors in the well, giving you a more accurate diagnosis of your well and reservoir issues.

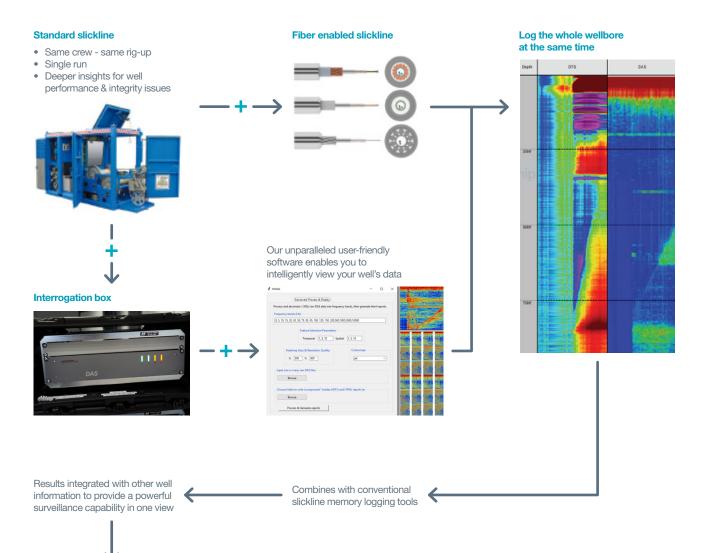
We work to extend your wells' lifespan while reducing time and costs.

Contact: wellintervention@exprogroup.com or visit:

www.exprogroup.com/products-services/well-intervention/well-technology/distributed-fiber-optic-sense

Key applications

- Leak detection
- Flow / injection monitoring
- Artificial lift assessment
- Behind casing crossflows
- Sand production
- Pre-abandonment surveys
- Slug detection / monitoring
- Clean-up monitoring
- Frac monitoring


Features and benefits

- Fiber is thin, low cost and is resistant to hostile environments
- Well life extension
- Restoration of production
- Monitor dynamic behavior
- Rapid processing and interpretation
- Enables on-site decision making in house
- Immune to EM effects
- Ideal for HP/HT applications
- Ease of use
- Fast processing
- Gives a clear picture of what is happening and allows you to react instantly

Complete investigative solution using Distributed Fiber Optic Sensing (DFOS) for your wells

Integrated DFOS intervention, data acquisition and interpretation from a global service company.

Reporting within hours allowing operational decision making on-site

CCL 100 100 GR Depth	DTS	DAS	Engineering	FTEMP	PRESSURE R ^a inter 1051	DPHI 61332 6.8 GR	ILD	LM	NPH_LS	Formation Zones
A			33° Shoe DHSSV 23° Shoe				Murphy N A Mura	PHYNHAR PLANNIN	When the add	Rodby

exprogroup.com/wellintervention

Specifications

Design details				
FIMT diameter	0.071" / 0.55"	1.8 / 1.4 mm		
Protection tube outer diameter	0.157"	4.0 mm		
Protection tube total wall thickness	0.020"	0.5 mm		
Cable weight	0.042 lb/ft	62 kg / km		
FIMT optical fibers (number x type)	2 x SM1250 (10.4 / 125) HT or CHT			

Operating parameters				
Operating temperature	-40°F to 300°F	-40°C to 150°C		
Rated tensile strength	1,300 lb	5,8 kN		
Maximum operating tension	800 lb	3,5 kN		
Rated collapse pressure of protection tube	17,300 psi	1195 bar		
Minimum bending radius without tensile load	3.1"	80 mm		
Minimum sheave diameter for maximum operating tension	11.8"	300 mm		